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I INTRODUCTION

Coupled with diffusion bonding, the superplastic forming operation has
allowed airframe manufacturing engineering to a more cost effective design
with significant savings 1in materials cost, labor intensive machininy
cost, and the possibility of obtaining large geometrically complicated
shapes in one step. The remarkable surface finish, isotropic mechanical
properties and saving of energy during forming operation are added
advantages to the csuperplastic forming proucess.

Although most attention has been devoted to the flow behavior of
superplastic materials, auother 1mportant behavior has received very
little attention. It is the area of fracture in superplastic materials.

It was thought for many years that internal cavities do not form during
superplastic duformation. However, it is now known that cavitation may be
an important process even in materials exhibiting large superplastic
ductility.

The interest in the problem of fracture in superplastic materials
arises for the following reasons:

(a) The need to reduce the extent of internal cavitation in super-
plastic alloys of commercial significance--alloys based on Al, Cu, Wi, and
Fe demonstrate serious cavitation problems. Even the Ti-6A1-4V alloys,
that have found extensive application in air frame parts cavitate (1) at
lower forming temperatures. The extent of cavitation in this alloy was
shown to increase (2) sharply with a small increase in grain size.

(b} Cavitation at high temperature leads to problems of intergranular
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to creep, low-cycle fatigue, welding and thermal cycling. A detailed study
of cavitation in superplasticity may assist in better understanding of one
of the most serious current fracture problems.

(c) In some superplastic forming operations, it is not the maximum
attainable ductility but the extent of strain dependent cavitafion that
sets a 1imit to the operating parameters to successful forming operations.

It is, therefore, important to understand the factors thot lead to
cavitation during superplastic deformation. A better understanding of
these factors will eventually enable us to devise procedures which minimize
the occurrence of cavitation. The current proposal outlines a three-year
experimental as well as theoretical approach to provide detailed informa-
tion on the influence of stress, strain, strain rate, teﬁperature and grain
size or phase size on the fracture characteristics of two superplastic
material systems.

It is anticipated that studies of microstructural changes, mechanrical
behavior,.fracture surfaces and density measurements will eventually shed
enough Tlight to enable us to describe the -cavity formation and
inter}inkage behavior in terms of reasonable coﬁstitutive expressions for
fracture. A successful implementation of such studies should provide the
tools to construct three-dimensional fracturz mechanisms maps for specific

superplastic material systems.

SUMMARY OF PRESENT STATUS UNDERSTANDING ON SUPERPLASTIC CAVITATION AND
FAILURE

(a) There has been some progress in our understanding of cavitation

and fracture process in superplasticity. However, many basic issues remain
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unclarified. During superplastic deforimation in tension, some alloys
cavitate extensively before fracture, often the cavities starting at fairly
early strain, Cavitation occurs during tensile flow but not during purely
compressive flow. In general, in many alloy systems, the vclume of
cavities increased with increasing strain. The dependence on strain rate
and température is ambiguous and can vary from one alloy system to another.
Superplastic cavitation can arise from the localization of flow along the
grain and interphase boundaries by the process of grain boundary sliding.
Hard particles can act as stress concentrators during the sliding process.

(b) There are substantial and significant differences in the details
of cavitation in creep and that in superplasticity. Apart from the very
important factor of the smallness of grain size and the much enhanced level
of grain boundary sliding, superpiastic cavitation is also greatly‘affected
by the strain rate sensitivity of the material. In superplastic alloys,
their propensity to retain large tensile elongations has been shown to be
related to the delayed coalescence of cavities, rather than to any reduced
rate of nucleation or growth. The stability of the deformation of the
ligament region between cavities is enhanced by the increased strain rate
sensitivity associated with superplastic flow of the bulk material.

(c) The theoretical understanding of cavitation and fracture in
superplasticity is on far less firm ground than similar understanding of
creep failure. The constitutive expressions for superplastic cavitation
is very inadequately developed at present. This problem is compounded by
the fact that there is a great scarcity of good experiméntal data
(mechanical, microstructural and physical data e.g., density measurements,
etc.) on well cheracterized materials system that fail by superplastic

cavitation,
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The growth of a cavity in superplasticity may be controlled by vacancy
diffusion or power-law creep. In general, diffusional growth is favored
at iow total strains and there is a transition to power-law growth at a
critical cavity radius. Currently available theoretical estimates show
that whereas the trend in transition from diffusion to power law growth
with increasing cavity radius 1is correct, the estimated size of the
critical radius at transition is seriously in error.

The final stages of cavitation are closely related to catastropic neck
growth. In exploring the problem of cavity coalescence, the question need
be addressed as to whether the rate sensitive properties are also scale
sensitive. Presumably, at cavity spacing less than one grain diameter,
the prcperties are indeed sensitive to scale features. More work yet need
be done in tnis aspect in order to relate the cavitation phenomenon

ultimately to actual failure stress.

2. PROGRESS DURING CURRENT PROGRAM YEAR

2.1 ABSTRACT

During the past year, we have initiated an experimental research
program in order to study the nucleation and growth of cavities in
Ti-6A1-4V alloy as a function of temperature, strain-rate and strain. We
have used scanning and transmission electron microscopy and guantitative
metallography, coupled with differential as well as constant (and
continuous) strain rate tests. We have established the shape of true
stress and true strain curves at four strain rates for each of three

constant temperatures. (lear evidence of cavity nucleation and growth

.
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have been observed. The extent of cavitation increases as temperature
decreases and cavitation is very easily discernible at 750°. Above 925°C
cavitation is not easily detectable.

During the same period we have reviewed the reievant literature
(including our previous work with the alloy) and have extracted the
pertinent paramenters for the vrate controlling mechanism for
superplasticity in Ti-6A1-4V alloy. Using these parameters in the
elevated temperature constitutive expressions for various creep mechanisms
and superplasticity, we have constructed two and three dimensional
deformation mechanism maps from available experimental data from
literature.

We have also investigated the details of the stress-strain curves
during deformation of Ti-6A1-4V in order to understand the role of grain
growth leading to strain hardening and grain refinement (primary through
dynamic recrystallization) leading to strain softening.

In a separate series of investigations the stress-strain rate
characteristics of Ti-6A1-4V at different temperatures ére being studied.
The activation energy for superplastic deformation and the dependence of
this apparent activation energy on microstructural activation are also

being investiyated.

2.2 Summary of Progress

Mechanical testing

A11 the experiments were conducted on a MTS servohydraulic machine
interfaced with a PDP/11 computer. This enabled us to use the computer
both as a controller in order to conduct either constant strain rate

tensile tests or differential strain rate tests. The computer also
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interfaced with a digital data acquisiticn system, The latter system
allowed us to collect, store, recall and evaluate the mechanicai results
and to subsequently plot the results in desired coordinates.

We are thankful to AFOSR for approval in earlier years for the partial
purchase cost of this system. Without this help we would not have the
fiexibility in our mechanical testing that we have today,

The Quad Elliptical Radiant Heating Furnace provided a heating rate of
200°C/min, The phaser power controller gave excellent temperature-control
capability (#1°C). The tests were conducted in an atmosphere of purified
argon gas.

The Ti-6A1-4V alloy was supplied by TIMET corporation. After vacuum
casting the ingot was forged in 'g' phase and subsequently hot rolled at
925°C to give a total reduction of 97 percent. This thermomechanical

processing produced a very fine grained equiaxed grain structure.

RESULTS

The mechanical tests were conducted at 750°, 800°, and 850°C. At each
temperature, the specimens were tested using four different strain rates:
10%, 5x107°, 2x10° and 1X107° per second.  These
combination of test temperature and strain rates assured the fact that the
specimen was deforming in the typical region II of superplasticity. At
any of these constant strain rate tests, the experiment was stopped et a
preprogrammed true strain of 0.2, 6.4, 0.6, 0.8, 1.0 and 1.2 ard the
specimen was gquenched in pre-chilled argon gas and cooled under 1load.
This was done in order to preserve the elevated temperature deformed

microstructure for subsequent scanning and transmission microscopy

otservations,
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Ffigures 1, 2, and 3 show the true stress vs. true strain curves for
750°, 800°, and 850°C respectively. At 750° and 800°C, at the two highest
strain rates investigated, the curves show evidence of strain softening.
Preliminary TEM studies suggests that this is .due to dynamic
recrystallization (Fig. 12). The two slowest strain rate curves at 750°,
800°, and 850°C show clear evidence of strain hardening. This we believe
is due to the observed grain growth.

The volume fraction of "g" phase (as observed in the quenched and
tested specimens at room temperature) is shown in Fig. 3. as a function of
strain. It is seen that whereas the volume fraction of 8 phase is
unaffected as a function of strain at 750° and 800°C, it is a sensitive
function of strain at 850°C. We also have noted a significant difference
in the characteristics of cavity appearence above and below 850°C. We
believe that these two obsevations are linked and we intend to pursue this
further. At present it appears that higher is the volume fraction of the
soft deformable g8 phase, lower is the incidence of cavitation.

A typical result of differential temperature tests is given in Fig.
5. In these experiments a single specimen is strained at constant
temperature at various strain rates in either an incremental or
decremental fashion. From the slope of a plot of log (stress) vs. log
(strain rate) one evaluates the strain-rate sensitivity parameter "m".
The m-values in ideal superplastic condition is typically around 0.5. Our
estimated values of m-parameter from experimental results were m = 0.53,
0.54, and 0.66 for 850°, 800°, and 750°C respectively, whick is close to

what we expect in superplasticity.
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Microstructural Observations

The tested specimens were investigated for evidence of cavity growth
using both SEM and TEM. Fig. 6 shows the SEM micrograph of a specimen
tested at 750°C at 10~% s~1 strain rate up to a true.strain ¢ = 1.05.
It reveals the presence of a cavity between two (darker) alpha-phase
grains. Fig. 6 is transmission photograph showing am elliptical shaped
cavity at the junction of three grain boundaries. Fig. 7 shows multiple
cavities at the grain boundaries at 800°C for specimens tests to a true

strain ¢ = 1.3.

Deformation Mechanism Maps

Stress, strain-rate and temperature are the three most important
parameters in the high temperature deformation process, i.e., creep, hot
rolling hot-forging, superplastic processing etc. The various elevated
temperature micromechanisms for plastic flow are getting fairly well
established now. We have already precduced two and three dimensional
deformation mechanism maps using such principles for the Al-Zn alloy system.

Using the methcd described in earlier progress report of our AFOSR
sporsored work, we have constructed two and three dimensional deformation
mechanism maps for Ti-6A1-4V alloy. The stress and grain size dependence of
strain rate and the activation energy were gathered from available
experimental data in the literature. The pre-exponential constant ‘A' was
estimated by fitting {he stress-strain rate data from current tests. The
procedure is described in "Two and Three Dimensional Maps for the High
Temperature Creep of In-22 percent Al Alloy", A. Arieli and A. K. Mukherjee,

Materials Science and Engineering, 47, (1981), 113.

Fig. 9a and 9b shows the stress-strain rate relationship for constant

grain size and constant temperature situation respectively. Fig. 10. shows
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the two-dimensional deformation mechanism maps for either stress-temperature
relationship at different (but constant) grain size or the stress-grain size
relationship for different (but constant) temperature. Finally'Fig. 11. shows
the three-dimensional deformation mechanism map -as a function of
normalized-stress, grain size and temperature. Here region IIl is dislocation
creep, region Il is superplasticity and region I is a distinct but as-yet an
unidentified mechanism.

In a new series of investigations with Ti-6A1-4V, we are trying to
establish from primary experimental data the following parameters

(a) the stress dependence of strain rate

(b) the dependence of strain rate on instantaneous (i.e., strain

enhanced) grain growth

(c) the activation energy of the deformation process

(d) the value of pre-exponential constants in the rate equations for
superplasticity and creep. Item (b) is important because grain growth and
particularly strain enhanced grain growth s an important aspect of
microstructural change in Ti-6A1-4V. It raises the value of flow stress at
any given temperature and strain rate. Its effect is more prounounced at low
strain rate and higher temperature. By investigating the strain, temperature
and strain rate dependence of the grain size, we hope to compensate for the
deformaticn enhanced grain growth in superplasticity. By incorporating the
instantaneous grain size, we hone to arrive at more realistic values for the
rate parameters for the constitutive equations for superplasticity and creep.
This inturn should enable us to produce more dependable 3-dimensional

deformation mechanism maps for this alloy.
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The following is a short description of the outcome of this preliminary
investigation. Fig. 13 shows the effect of strain rate at a constant
temperature of 925°C. Fig. 14 shows the effect of temperature at a constant
strain rate of 2 «x 10"4 s"l. One observes strain. softening at higher
strain rates or lower temperature. Similarly at lower strain rates or higher
temperature one observes strain hardening (due to grain growth). Figs. 15,
16, and 17 depict the log flow stress-log strain rate relationship at the
onset of yielding, at 0.2 true strain and at 0.5 true strain respectively.

The rest of needed data points are being generated at present, Fig. 18 to Fig.

21 shows the experimentally measured activation energy at the onset of yield,

- and at 0.2, 0.5, ~0.75 strain respectively. The activation energy decreases

with increase in strain (Fig. 22). This is undoubtedly due to microstructural

alterations which are being investigated at present.

2.3 Conclusion

a) We have noticed cavitaticn in superplastic deformation only at the
grain boundaries or phase boundaries and at grain boundary triple-points. At
present it appears to be always so.

b) It appears from present work that the strain hardening, during
superplastic deformation at lower strain rates is due to grain growth and the
strain softening at higher strain rate is due to dynamic recrystallization and
the consequent refinement of grain size. Transmission electron microscopy
supports this conclusion.

c) We recall the fact that the volume fraction of g phase (Fig. 4)
increased substantially as a function of strain at 850° (but not at 750° and
800°C) and the fact that above 900°C there was very little noticeable
cavitation, It appears that an increased volume fraction of g phase minimizes
the probability of cavitation by making the accomodation process due to grain

boundary sliding easier.
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Figure 12
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Figure 15 Log true stress-ve~Log true strain rate for the yield

stress of Ti-6Al-4V with an initial grain size of 8.2 microns.
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Pigurel6 Log true stress~vs-Log true strain rate for Ti-6A1-4V

at a true strain of 0.2, (Initial grain size 1s 8.2 microus)
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Figure 17 Log true stress-vs-Log true strain rate for Ti-6A1-4V

with an initial grain size of 8.2 microns and at a true strain of 0.5.
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INVERSE TEMPERATURE, (ABSOLUTE) E-04

STRAIN RATE= 2.000006-04 STRAIN= @

THE EQUATION FOR THE LINE IS: Y= 13.545 +-15717.8 %(1/T)
THE COEFFIFIENT OF DETERMINATION IS: .9514@S

THE ACTIVATION ENERGY FOR CREEP IS: 71925.7 (CAL/MOLEMK)
THE VALUE OF THE CONSTANT AT THE INTERCEPT IS 3.5@0724E+13
THE STRAIN RATE SENSITIVITY IS 1.73

I STRESS, (MPA) T, (K) X(I) Y(I)

1 . 79.9- 775 9.54196E-04 -1.38267

2 51.2 9.10747E-84 -.932951

3 23.1 87s 8.71082E-84 -.299759

4 7. 925 B8.34725E-84 .59@8734
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SLOPE=-14595, (Q=66.7 KCAL/MOLEM()
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8.28 68.44 8.60 8.76 8.92 9.8 9.24 9.40 9.56 9.72 9.t
INVERSE TEMPERATURE, (ABSOLUTE) E-

STRAIN RATE= 2.0000VE-04 STRAIN= .2

THE EQUATION FOR THE LINE IS: Y= 12.6697 +-14595.7 %(1/T)
THE COEFFIFIENT OF DETERMINATION IS: .976184

THE ACTIVATION ENERGY FOR CREEP IS: 66790).8 (CAL/MOLEMK)
THE VALUE OF THE CONSTANT AT THE INTERCEPT IS 4.67451E+12
THE STRAIN RATE SENSITIVITY IS 1.73

AWNEL-

STRESS, (MPA) T, (K) X(I) Y(I)
66.5 775 9.541968E-04 -1.1647S
38.8 825 9.18747E-04 -.724593
18.6 g75 8.71000E-04 -.136968
7.43 925 8.34725E-84 .S87654
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8.78 ACTIVATION ENERGY OF SUPERPLASTICITY BASED ON TRUE STRAIN OF 0.5

+
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STRAIN RATE= 2.00000E -4 STRAIN= .5

THE EQUATION FOR THE LINE IS: Y= 18.5624 +-12145.1 *(1/T)
THE COEFFIFIENT OF DETERMINATION IS: .979595

THE ACTIVATION ENERGY FOR CREEP IS: S55576.6 (CAL/MOLEAK)
THE VALLE OF THE CONSTANT AT THE INTERCEPT IS 3.65095E+10
THE STRAIN RATE SENSITIVITY IS 1.73

I STRESS, (MPA) T, (K) X(I) Y(I)
1 S0 775 9.541968€-04 —.950482
2 3.2 825 9.16747E-84 -.584505
3 17.4 g75 8.71000E-04 -.0B86861
4 8.3 925 8.34725E-84 .5B45
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THE. ACTIVATION ENERGY FOR CREEP IS: 36824.7 (CAL/MOLEK)
THE VALUE OF THE CONSTANT AT THE INTERCEPT IS 9.95424E406
THE STRAIN RATE SENSITIVITY IS 1.73

I STRESS, (MPA) T, (K) X(I) Y(I)

1 30.6 75 9.54198E-04 -—.581562

2 27.1 825 9.10747E-84 -—.454951

3 17.2 875 8.71000E-84 -.0781749
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Figure 22 Variation of activation energy with strain in Ti-6A1-4V,

initial grain size is 8.2 microns, true strain rate is 2x10'4.
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